### **FLUID POWER FORMULAS**



#### **General fluid power guidelines**

Horsepower for driving a pump: For every 1 hp of drive, the equivalent of 1 gpm @ 1,500 psi can be produced.

**Horsepower for idling a pump:** To idle a pump when it is unloaded will require about 5% of its full rated power.

Wattage for heating hydraulic oil: Each watt will raise the temperature of 1 gallon of oil by 1° F per hour.

**Flow velocity in hydraulic lines:** Pump suction lines 2 to 4 feet per second, pressure lines up to 500 psi - 10 to 15 ft./sec., pressure lines 500 to 3,000 psi - 15 to 20 ft./sec.; all oil lines in air-over-oil systems; 4 ft./sec.

#### **Basis formulas**

| Formula for:                            | Word formula:                                                               | Letter formula:      |  |
|-----------------------------------------|-----------------------------------------------------------------------------|----------------------|--|
| FLUID PRESSURE<br>In Pounds/Square Inch | Pressure = $\frac{\text{Force (Pounds)}}{\text{Unit Area (Square Inches)}}$ | P = F/A or psi = F/A |  |
| FLUID FLOW RATE<br>In Gallons/Minute    | Flow Rate = Volume (Gallons) Unit Time (Minute)                             | Q = V/T              |  |
| FLUID POWER<br>In Horsepower            | Horsepower = $\frac{\text{Pressure (psi) x Flow (GPM)}}{1714}$              | hp = PQ/1714         |  |

### Fluid formulas

| Formula for:                                                              | Word formula:                                                                                                                 | Letter formula:                          |  |  |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|
| VELOCITY THROUGH PIPING<br>In Feet/Second Velocity                        | Velocity = \frac{.3208 \times Flow Rate through I.D. (GPM)}{Internal Area (Square Inches)                                     | V = .3208Q/A                             |  |  |
| COMPRESSIBILITY OF OIL<br>In Additional Required Oil<br>to Reach Pressure | Additional Volume = \frac{\text{Pressure (psi) x Volume of Oil under Pressure}}{250,000 (approx.)}                            | V <sub>A</sub> = PV/250,000 (approx.)    |  |  |
| COMPRESSIBILITY<br>OF A FLUID                                             | Compressibility = 1  Bulk Modulus of the Fluid                                                                                | C(B) = 1/BM                              |  |  |
| SPECIFIC GRAVITY<br>OF A FLUID                                            | Specific Gravity = Weight of One Cubic Foot of Fluid Weight of One Cubic Foot of Water                                        | SG = W/62.4283                           |  |  |
| VALVE (Cv) FLOW FACTOR                                                    | Valve Factor = $\frac{\text{Flow Rate (GPM)}\sqrt{\text{Specific Gravity}}}{\sqrt{\text{Pressure Drop (psi)}}}$               | $Cv = (Q\sqrt{SG})/(\sqrt{\Delta \rho})$ |  |  |
|                                                                           | For Viscosities of 32 to 100 Saybolt Universal Seconds:  Centistokes = .2253 x SUS - $\left(\frac{194.4}{SUS}\right)$         | CS = .2253 SUS - (194.4/SUS)             |  |  |
| VISCOSITY IN CENTISTOKES                                                  | For Viscosities of 100 to 240 Saybolt Universal Seconds:  Centistokes = .2193 x SUS - $\left(\frac{134.6}{\text{SUS}}\right)$ | CS = .2193 SUS - (134.6/SUS)             |  |  |
|                                                                           | For Viscosities greater than 240 Saybolt Universal Seconds:  Centistokes = $\left(\frac{SUS}{4.635}\right)$                   | CS = SUS/4.635                           |  |  |

Note: Saybolt Universal Seconds can also be abbreviated as SSU.

### **FLUID POWER FORMULAS**



# **Pump formulas**

| Formula for:                             | Word formula:                                                                                  | Letter formula:                                                    |  |  |
|------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|
| PUMP OUTLET FLOW<br>In Gallons/Minute    | Flow = rpm x Pump Displacement (Cu. In./Ref.)                                                  | Q = nd/231                                                         |  |  |
| PUMP INPUT POWER In Horsepower Required  | Horsepower Input = Flow Rate Output (GPM) x Pressure (psi)  1714 Efficiency (Overall)          | HP <sub>in</sub> = QP/1714Eff. or<br>(GPM x psi)/1714Eff.          |  |  |
| PUMP EFFICIENCY<br>Overall in Percent    | Overall Efficiency = ( Output Horsepower )x 100                                                | $Eff_{OV} = (HP_{out}/HP_{in}) \times 100$                         |  |  |
|                                          | Overall Efficiency = Volumetric Eff. x Mechanical Eff.                                         | Eff <sub>ov</sub> = Eff <sub>vol</sub> x Eff <sub>mech</sub>       |  |  |
| PUMP EFFICIENCY<br>Volumetric in Percent | Volumetric Efficiency = Actual Flow Rate Output (GPM) Theoretical Flow Rate Output (GPM) x 100 | $Eff_{vol} = (Q_{act}/Q_{theo}) \times 100$                        |  |  |
| PUMP EFFICIENCY<br>Mechanical in Percent | Mechanical Efficiency = Actual Torque to Drive x 100  Theoretical Torque to Drive              | Eff <sub>mech</sub> = (T <sub>act</sub> /T <sub>theo</sub> ) x 100 |  |  |

### **Actuator formulas**

| Formula for:                                 | Word formula:                                                                                           | Letter formula:                           |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| CYLINDER AREA                                | Area = ∏ x Radius² (Inches)                                                                             | A = ∏r²                                   |  |  |
| In Square Inches                             | Area = (P/4) x Diameter² (Inches)                                                                       | $A = (\Pi D^2)/4 \text{ or } A = .785D^2$ |  |  |
| CYLINDER FORCE<br>In Pounds, Push or Pull    | Area = Pressure (psi) x Net Area (sq in.)                                                               | F = psi x A or F = PA                     |  |  |
| CYLINDER VELOCITY or SPEED<br>In Feet/Second | Velocity = \frac{231 \times Flow Rate (GPM)}{12 \times 60 \times Net Area (sq in.)}                     | v = 231Q/720A or v = .3208Q/A             |  |  |
| CYLINDER VOLUME CAPACITY                     | Volume = $\frac{\prod x \text{ Radius}^2 \text{ (in.) } x \text{ Stroke (in.)}}{231}$                   | V = (∏r²L)/231                            |  |  |
| In Gallons of Fluid                          | Volume = Net Area (sq. in.) x Stroke (in.) 231                                                          | V= (A L)/231                              |  |  |
| CYLINDER FLOW RATE<br>In Gallons/Minute      | Flow Rate = $\frac{12 \times 60 \times \text{Velocity (Ft/Sec)} \times \text{Net Area (sq. in.)}}{231}$ | Q = (720vA)231 or Q = 3.117vA             |  |  |
|                                              | Torque = $\frac{\text{Pressure (psi)} \times \text{F.M. Displacement (Cu. In./Rev.)}}{2\Pi}$            | T = psi d/2∏ or T = Pd/2∏                 |  |  |
| FLUID MOTOR TORQUE<br>In Inch Pounds         | Torque = Horsepower x 63025<br>rpm                                                                      | T = 63025 hp/n                            |  |  |
|                                              | Torque = Flow Rate (GPM) x Pressure (psi) x 36.77 rpm                                                   | T = 36.77QP/n or T = 36.77Qpsi/n          |  |  |
| FLUID MOTOR TORQUE/100 psi<br>In Inch Pounds | Torque 100 = F.M. Displacement (Cu. In./Rev.) .0628                                                     | T <sub>100psi</sub> = d/.0628             |  |  |
| FLUID MOTOR SPEED<br>In Revolutions/Minute   | Speed = 231 Flow Rate (GPM)  F.M. Displacement (Cu. In./Rev.)                                           | n = 231 Q/d                               |  |  |
| FLUID MOTOR POWER<br>In Horsepower Output    | Horsepower = Torque Output (Inch Pounds) x rpm hp = Tn/63025                                            |                                           |  |  |



### Thermal formulas

| Formula for:                                                      | Word formula:                                                                                                    | Letter formula:       |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| RESERVOIR COOLING CAPACITY Based on Adequate Air Circulation      | Heat (BTU/Hr) = 2 x Temperature Difference Between<br>Reservoir Walls and Air (F') x Area of Reservoir (Sq. Ft.) | BTU/Hr = 2.0 x DT x A |  |
| HEAT IN HYDRAULIC OIL<br>Due to System Inefficiency<br>(SG=.8992) | Heat (BTU/Hr) = Flow Rate (GPM) x 210 x Temp. Difference (F)                                                     | BTU/Hr = Q x 210 x DT |  |
| HEAT IN FRESH WATER                                               | Heat (BTU/Hr) = Flow Rate (GPM) x 500 x Temp. Difference (F')                                                    | BTU/Hr = Q x 500 x DT |  |

**Note:** One British Thermal Unit (BTU) is the amount of heat required to raise the temperature of one pound of water one degree Fahrenheit. One Horsepower = 2545 BTU/Hr.

### **Accumulator formulas**

| Formula for:                                        | Word formula:                                                                                                     | Letter formula:                                                                        |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
| PRESSURE OR VOLUME With Constant T (Temperature)    | Original Pressure x Original Volume = Final Pressure x Final Volume                                               | $P_1V_1 = P_2V_2$ Isothermic                                                           |  |
| PRESSURE OR TEMPERATURE<br>With Constant V (Volume) | Original Pressure x Final Temp. = Final Pressure x Original Temp.                                                 | $P_1T_2 = P_2T_1$ Isochoric                                                            |  |
| VOLUME OR TEMPERATURE<br>With Constant P (Pressure) | Original Volume v Final Jamn - Final Volume v Original Jamn                                                       |                                                                                        |  |
| PRESSURE OR VOLUME                                  | Original Press. x Original Volume <sup>n</sup> = Final Press. x Final Volume <sup>n</sup>                         | P <sub>1</sub> V <sub>1</sub> <sup>n</sup> =P <sub>2</sub> V <sub>2</sub> <sup>n</sup> |  |
| With Temp. Change Due to<br>Heat of Compression     | Final Temp./Orig. Temp. = (Orig. Vol./Final Vol.) <sup>n-1</sup> = (Final Press./Orig. Press.) <sup>(n-1)/n</sup> | $T_2/T_1 = (V_1/V_2)^{n-1} = (P_2/P_1)^{(n-1)/n}$                                      |  |

## Volume and capacity equivalents

|                     |                 |            |                   |          |              |                     | Water at max density |                       |
|---------------------|-----------------|------------|-------------------|----------|--------------|---------------------|----------------------|-----------------------|
|                     | Cubic<br>inches | Cubic feet | Cubic centimeters | Liters   | U.S. gallons | Imperial<br>gallons | Pounds of water      | Kilograms of<br>water |
| Cubic inches        | 1               | 0.0005787  | 16.384            | 0.016384 | 0.004329     | 0.0036065           | 0.361275             | 0.0163872             |
| Cubic feet          | 1728            | 1          | 0.037037          | 28.317   | 7.48052      | 6.23210             | 62.4283              | 28.3170               |
| Cubic centimeters   | 0.0610          | 0.0000353  | 1                 | 0.001    | 0.000264     | 0.000220            | 0.002205             | 0.0001                |
| Liters              | 61.0234         | 0.0353145  | 0.001308          | 1        | 0.264170     | 0.220083            | 2.20462              | 1                     |
| U.S. gallons        | 231             | 0.133681   | 0.004951          | 3.78543  | 1            | 0.833111            | 8.34545              | 3.78543               |
| Imperial<br>gallons | 277.274         | 0.160459   | 0.0059429         | 4.54374  | 1.20032      | 1                   | 10.0172              | 4.54373               |
| Pounds of water     | 27.6798         | 0.0160184  | 0.0005929         | 0.453592 | 0.119825     | 0.0998281           | 1                    | 0.453593              |