FLUID POWER FORMULAS

General fluid power guidelines

Horsepower for driving a pump: For every 1 hp of drive, the equivalent of $1 \mathrm{gpm} @ 1,500 \mathrm{psi}$ can be produced.
Horsepower for idling a pump: To idle a pump when it is unloaded will require about 5% of its full rated power.
Wattage for heating hydraulic oil: Each watt will raise the temperature of 1 gallon of oil by $1^{\circ} \mathrm{F}$ per hour.
Flow velocity in hydraulic lines: Pump suction lines 2 to 4 feet per second, pressure lines up to $500 \mathrm{psi}-10$ to 15 ft ./sec., pressure lines 500 to 3,000 psi - 15 to 20 ft ./sec.; all oil lines in air-over-oil systems; 4 ft ./sec.
Basis formulas

Formula for:	Word formula:	Letter formula:
FLUID PRESSURE In Pounds/Square Inch	Pressure $=\frac{\text { Force (Pounds) }}{\text { Unit Area (Square Inches) }}$	$\mathrm{P}=\mathrm{F} / \mathrm{A}$ or psi $=\mathrm{F} / \mathrm{A}$
FLUID FLOW RATE In Gallons/Minute	Flow Rate $=\frac{\text { Volume (Gallons) }}{\text { Unit Time (Minute) }}$	$\mathrm{Q}=\mathrm{V} / \mathrm{T}$
FLUID POWER In Horsepower	Horsepower $=\frac{\text { Pressure (psi) } \times \text { Flow (GPM) }}{1714}$	$\mathrm{hp}=\mathrm{PQ} / 1714$

Fluid formulas

Formula for:	Word formula:	Letter formula:
VELOCITY THROUGH PIPING In Feet/Second Velocity	$\text { Velocity }=\frac{.3208 \times \text { Flow Rate through I.D. (GPM) }}{\text { Internal Area (Square Inches) }}$	$\mathrm{V}=.3208 \mathrm{Q} / \mathrm{A}$
COMPRESSIBILITY OF OIL In Additional Required Oil to Reach Pressure	Additional Volume $=\frac{\text { Pressure (psi) } \times \text { Volume of Oil under Pressure }}{250,000 \text { (approx.) }}$	$\mathrm{V}_{\mathrm{A}}=\mathrm{PV} / 250,000$ (approx.)
COMPRESSIBILITY OF A FLUID	$\text { Compressibility }=\frac{1}{\text { Bulk Modulus of the Fluid }}$	$C(B)=1 / B M$
SPECIFIC GRAVITY OF A FLUID	$\text { Specific Gravity }=\frac{\text { Weight of One Cubic Foot of Fluid }}{\text { Weight of One Cubic Foot of Water }}$	SG = W/62.4283
VALVE (Cv) FLOW FACTOR	$\text { Valve Factor }=\frac{\text { Flow Rate (GPM) } \sqrt{\text { Specific Gravity }}}{\sqrt{\text { Pressure Drop (psi) }}}$	$C V=(Q \sqrt{S G}) /(\sqrt{\Delta p})$
	For Viscosities of 32 to 100 Saybolt Universal Seconds: $\text { Centistokes }=.2253 \times \text { SUS }-\left(\frac{194.4}{\text { SUS }}\right)$	CS = . 2253 SUS - (194.4/SUS)
VISCOSITY IN CENTISTOKES	For Viscosities of 100 to 240 Saybolt Universal Seconds: $\text { Centistokes }=.2193 \times \text { SUS }-\left(\frac{134.6}{\text { SUS }}\right)$	CS = . 2193 SUS - (134.6/SUS)
	For Viscosities greater than 240 Saybolt Universal Seconds: $\text { Centistokes }=\left(\frac{\text { SUS }}{4.635}\right)$	CS $=$ SUS/4.635

Note: Saybolt Universal Seconds can also be abbreviated as SSU.

Pump formulas

Formula for:	Word formula:	Letter formula:
PUMP OUTLET FLOW In Gallons/Minute	$\text { Flow }=\frac{\mathrm{rpm} \times \text { Pump Displacement (Cu. In./Ref.) }}{231}$	$Q=n d / 231$
PUMP INPUT POWER In Horsepower Required	$\text { Horsepower Input }=\frac{\text { Flow Rate Output (GPM) } \times \text { Pressure (psi) }}{1714 \text { Efficiency (Overall) }}$	$H P_{\text {in }}=$ QP/1714Eff. or (GPM x psi)/1714Eff.
PUMP EFFICIENCY	Overall Efficiency $=\left(\frac{\text { Output Horsepower }}{\text { Input Horsepower }}\right) \times 100$	$\mathrm{Eff}_{\text {ov }}=\left(\mathrm{HP}_{\text {out }} / / \mathrm{HP}_{\text {in }}\right) \times 100$
	Overall Efficiency = Volumetric Eff. x Mechanical Eff.	$\mathrm{Eff}_{\mathrm{ov}}=\mathrm{Eff}_{\text {vol }} \times \mathrm{Eff}_{\text {mech }}$
PUMP EFFICIENCY Volumetric in Percent	$\text { Volumetric Efficiency }=\frac{\text { Actual Flow Rate Output (GPM) }}{\text { Theoretical Flow Rate Output (GPM) }} \times 100$	$E f f_{\text {vol }}=\left(Q_{\text {act }} / Q_{\text {theo }}\right) \times 100$
PUMP EFFICIENCY Mechanical in Percent	$\text { Mechanical Efficiency }=\frac{\text { Actual Torque to Drive }}{\text { Theoretical Torque to Drive }} \times 100$	$E f f_{\text {mech }}=\left(T_{\text {act }} / T_{\text {theo }}\right) \times 100$

Actuator formulas

Formula for:	Word formula:	Letter formula:
CYLINDER AREA In Square Inches	Area $=\Pi \times$ Radius ${ }^{2}$ (Inches)	$A=\pi r^{2}$
	Area $=(\mathrm{P} / 4) \times$ Diameter 2 (Inches)	$\mathrm{A}=\left(\Pi D^{2}\right) / 4$ or $\mathrm{A}=.785 \mathrm{D}^{2}$
CYLINDER FORCE In Pounds, Push or Pull	Area $=$ Pressure (psi) \times Net Area (sq in.)	$\mathrm{F}=\mathrm{psi} \times \mathrm{A}$ or $\mathrm{F}=\mathrm{PA}$
CYLINDER VELOCITY or SPEED In Feet/Second	$\text { Velocity }=\frac{231 \times \text { Flow Rate (GPM) }}{12 \times 60 \times \text { Net Area (sq in.) }}$	$\mathrm{V}=231 \mathrm{Q} / 720 \mathrm{~A}$ or $\mathrm{v}=.3208 \mathrm{Q} / \mathrm{A}$
CYLINDER VOLUME CAPACITY In Gallons of Fluid	Volume $=\frac{\Pi \times \text { Radius }^{2} \text { (in.) } \times \text { Stroke (in.) }}{231}$	$\mathrm{V}=\left(\Pi \mathrm{r}^{2} \mathrm{~L}\right) / 231$
	$\text { Volume }=\frac{\text { Net Area (sq. in.) } \times \text { Stroke (in.) }}{231}$	$\mathrm{V}=(\mathrm{AL}) / 231$
CYLINDER FLOW RATE In Gallons/Minute	$\text { Flow Rate }=\frac{12 \times 60 \times \text { Velocity }(\mathrm{Ft} / \mathrm{Sec}) \times \text { Net Area (sq. in.) }}{231}$	$Q=(720 v A) 231$ or $Q=3.117 \mathrm{vA}$
FLUID MOTOR TORQUE In Inch Pounds	$\text { Torque }=\frac{\text { Pressure (psi) } \times \text { F.M. Displacement (Cu. In./Rev.) }}{2 \Pi}$	$\mathrm{T}=\mathrm{psi} \mathrm{d} / 2 \mathrm{~T}$ or $\mathrm{T}=\mathrm{Pd} / 2 \mathrm{~T}$
	$\text { Torque }=\frac{\text { Horsepower } \times 63025}{\mathrm{rpm}}$	$\mathrm{T}=63025 \mathrm{hp} / \mathrm{n}$
	$\text { Torque }=\frac{\text { Flow Rate }(\text { GPM }) \times \text { Pressure }(\mathrm{psi}) \times 36.77}{\mathrm{rpm}}$	$\mathrm{T}=36.77 \mathrm{QP} / \mathrm{n}$ or $\mathrm{T}=36.77 \mathrm{Qpsi} / \mathrm{n}$
FLUID MOTOR TORQUE/100 psi In Inch Pounds	$\frac{\text { Torque }}{100}=\frac{\text { F.M. Displacement (Cu. In./Rev.) }}{.0628}$	$\mathrm{T}_{100 \text { si }}=\mathrm{d} / .0628$
FLUID MOTOR SPEED In Revolutions/Minute	$\text { Speed }=\frac{231 \text { Flow Rate (GPM) }}{\text { F.M. Displacement (Cu. In./Rev.) }}$	$\mathrm{n}=231 \mathrm{Q} / \mathrm{d}$
FLUID MOTOR POWER In Horsepower Output	$\text { Horsepower }=\frac{\text { Torque Output (Inch Pounds) } \times \text { rpm }}{63025}$	$\mathrm{hp}=\mathrm{Tn} / 63025$

Thermal formulas

Formula for:	Word formula:	Letter formula:
RESERVOIR COOLING CAPACITY Based on Adequate Air Circulation	Heat (BTU/Hr) $=2 \times$ Temperature Difference Between Reservoir Walls and Air (F) x Area of Reservoir (Sq. Ft.)	$\mathrm{BTU} / \mathrm{Hr}=2.0 \times$ DT \times A
HEAT IN HYDRAULIC OIL Due to System Inefficiency (SG=.89-.92)	Heat (BTU/Hr) = Flow Rate (GPM) $\times 210 \times$ Temp. Difference (F)	$\mathrm{BTU} / \mathrm{Hr}=\mathrm{Q} \times 210 \times \mathrm{DT}$
HEAT IN FRESH WATER	Heat (BTU/Hr) = Flow Rate (GPM) $\times 500 \times$ Temp. Difference (F)	BTU/Hr $=Q \times 500 \times$ DT

Note: One British Thermal Unit (BTU) is the amount of heat required to raise the temperature of one pound of water one degree Fahrenheit. One Horsepower = $2545 \mathrm{BTU} / \mathrm{Hr}$.

Accumulator formulas

Formula for:	Word formula:	Letter formula:
PRESSURE OR VOLUME With Constant T (Temperature)	Original Pressure x Original Volume = Final Pressure x Final Volume	$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$ Isothermic
PRESSURE OR TEMPERATURE With Constant V (Volume)	Original Pressure \times Final Temp. $=$ Final Pressure \times Original Temp	$P_{1} T_{2}=P_{2} T_{1}$ Isochoric
VOLUME OR TEMPERATURE With Constant P (Pressure)	Original Volume \times Final Temp. = Final Volume \times Original Temp.	$\mathrm{V}_{1} \mathrm{~T}_{2}=\mathrm{V}_{2} \mathrm{~T}_{1}$ Isobaric
PRESSURE OR VOLUME With Temp. Change Due to Heat of Compression	Original Press. \times Original Volume ${ }^{n}=$ Final Press. \times Final Volume ${ }^{\text {n }}$	$P_{1} V_{1}{ }^{n}=P_{2} V_{2}{ }^{n}$
	Final Temp./Orig. Temp. $=(\text { Orig. Vol./Final Vol. })^{n-1}=(\text { Final Press./Orig. Press. })^{(n-1) / n}$	$\mathrm{T}_{2} / \mathrm{T}_{1}=\left(\mathrm{V}_{1} / V_{2}\right)^{n-1}=\left(\mathrm{P}_{2} / \mathrm{P}_{1}\right)^{(n-1) / n}$

Volume and capacity equivalents

	Cubic inches	Cubic feet	Cubic centimeters	Liters	U.S. gallons	Imperial gallons	Water at max density	
							Pounds of water	Kilograms of water
Cubic inches	1	0.0005787	16.384	0.016384	0.004329	0.0036065	0.361275	0.0163872
Cubic feet	1728	1	0.037037	28.317	7.48052	6.23210	62.4283	28.3170
Cubic centimeters	0.0610	0.0000353	1	0.001	0.000264	0.000220	0.002205	0.0001
Liters	61.0234	0.0353145	0.001308	1	0.264170	0.220083	2.20462	1
U.S. gallons	231	0.133681	0.004951	3.78543	1	0.833111	8.34545	3.78543
Imperial gallons	277.274	0.160459	0.0059429	4.54374	1.20032	1	10.0172	4.54373
Pounds of water	27.6798	0.0160184	0.0005929	0.453592	0.119825	0.0998281	1	0.453593

